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The present fundamental knowledge of fluid turbulence has been established primarily from hot- and cold-
wire measurements. Unfortunately, however, these measurements necessarily suffer from contamination by
noise since no certain method has previously been available to optimally filter noise from the measured signals.
This limitation has impeded our progress of understanding turbulence profoundly. We address this limitation by
presenting a simple, fast-convergent iterative scheme to digitally filter signals optimally and find Kolmogorov
scales definitely. The great efficacy of the scheme is demonstrated by its application to the instantaneous
velocity measured in a turbulent jet.

DOI: 10.1103/PhysRevE.71.066304 PACS numberssd: 47.27.2i, 47.80.1v

In his pioneering workf1g on turbulence, Kolmogorov
derived, based on dimensional reasoning, the characteristic
length of the finest-scale turbulent motions to be

h ; sn3/«d1/4, s1d

which is hence called the “Kolmogorov length scale.” In Eq.
s1d, n is the kinematic viscosity and« is the average dissipa-
tion rate of the turbulence kinetic energy given byse.g.,
Hinze f2gd

« = ns]ui/]xj + ]uj/]xid]ui/]xj s2d

with standard Cartesian tensor notation and summation on
repeated indices, wherei or j =1, 2, and 3 represent the
streamwise, lateral, and spanwise directions, respectively.

The appropriate estimate ofh is of significant importance
for improving our understanding of the fine-scale turbulence.
However, great difficulty occurs in directly measuring this
characteristic scale. To obtain« requires all the 12 terms of
gradient correlations in Eq.s2d to be measured. This task
cannot be realized by presently available experimental tech-
niques. Accurate measurements of even one component of
]ui /]xj, as is well known, requires a multisensor probe with
extremely high spatial and temporal resolution to incorporate
even the smallest scales of velocity fluctuations. Moreover,
several cross-correlation terms in Eq.s2d simply cannot be
measured directly nowf3g or in the foreseeable future, let
alone direct measurements of« and h. In this context, it
remains necessary to estimateh from hot-wire measurements
of « using the isotropic relation

« = 15ns]u1/]x1d2 s3d

and also Taylor’s hypothesis

s]u1/]x1d2 = U1
−2s]u1/]td2, s4d

whereU1 is the local streamwise mean velocity. Substitution
of Eq. s4d into Eq. s3d leads to

« = 15nU1
−2s]u1/]td2. s5d

In addition, the Kolmogorov frequency is defined as

fK ; U1s2phd−1. s6d

It is important to note that the nonfiltered or slightly fil-
tered velocity signalsuim sthe subscriptm means “mea-
sured”d is inevitably contaminated by high-frequency elec-
tronic noisesnd, i.e.,

uim = ui + n. s7d

This contamination causes both the spatial and temporal gra-
dient variances to be overestimated, i.e.,

s]uim/]xjd2 = s]ui/]xjd2 + s]n/]xjd2, s8d

s]uim/]td2 = s]ui/]td2 + s]n/]td2.

The extra termss]n/]xjd2 and s]n/]td2 are the unwanted
noise contributions. Therefore, to achieve accurate measure-
ments of the velocity gradients, it is necessary that the raw
velocity signalsuim be low-pass filtered at a specific cutoff
frequencyfc to eliminate the effect of noise. The choice offc
is critical. Too high and it will not remove noise contribu-
tions sufficiently, while too low and it will wipe out some
content of the signal. The right choice forfc is the Kolmog-
orov frequencyfK, i.e., the characteristic frequency of the
smallest structures. However,fK not only is a function of the
flow but also varies with spatial locations in the flow so that
it cannot be determineda priori. The method described inf4g
to determinefc in situ is complex, requiring two mechanical
analog filters, a differentiator, a real-time spectrum analyzer,
visual inspection, and optimization ateachmeasurement lo-
cation. This procedure is only realistic where the number of
spatial locations or flow conditions is limited, and is prohibi-
tive for experiments where these are large. In the absence of
a simpler procedure, more arbitrary criteria are usually
adopted, so that most previous measurements of« must be
contaminated by noise to some extent. The importance of
this issue is also evident fromf5g from which it is deduced
that even slightly over filteringuim at fc, fK may cause sub-
stantial underestimate of the velocity gradients.

From the above discussion it is obvious that substantial
benefit would arise from a procedure that could correctly
obtain fK without prior knowledge ofh, or obtain bothh and
fK solely from a nonfiltered signal ofu1m. The present work
aims to address this issue, i.e., to develop a simple and ef-
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fective scheme that can definitively obtainh and fK from
u1mstd, and thus a means by which to low-pass filter all the
velocity componentsuimstd at fc= fK, thereby minimizing the
effect of noise on gradients]ui /]xj and other derived quan-
tities such as structure functions.

Let us first inspect the contributions of noise to the mea-
sured kinetic energyu1

2 and dissipation«. This is illustrated
using the one-dimensional spectral forms ofu1

2 and « for
isotropy, which aresseef6gd

u1
2 =E

0

`

E1sk1ddk1 s9d

and

« = 15nE
0

`

k1
2E1sk1ddk1, s10d

respectively, whereE1 is the one-dimensional spectrum func-
tion andk1 is the wave number in the streamwisesx1d direc-
tion. To demonstrate the influence of noise onu1

2 and«, we
consider the model spectrum functionse.g.,f7,8gd

E1sk1d = CK«2/3k1
−5/3 expf− ask1hd3/4g s11d

whereCK is a “constant” determined empirically by experi-
ments anda= 3

2CK. Note that Eq.s11d has been verified by a
large body of experimental high-Re datasseef9g which ref-
erences relevant experimentsd. Using Eq. s6d and k1
=2pf /U1 sTaylor hypothesisd, Eq. s11d may be rewritten as

E1sfd = CKs2p/U1d−5/3f−5/3 expf− asf/fKd3/4g. s12d

Suppose the noise-contaminated velocity spectrum to be
E1m=E1+En, where En is the “noise” contribution. Then,
from Eqs.s9d and s10d andk1=2pf /U1, we can obtain

u1m
2 = 2pU1

−1E
0

`

sE1 + Enddf s13d

and

«m = 120p3nU1
−3E

0

`

f2sE1 + Enddf . s14d

Using Eq.s12d with CK=1.7 and thena=2.55se.g.,f10gd we
illustrate in Fig. 1 the spectral density distributions ofu1m

2

and «m with En=0 andEn=10−3sf / fKd2. This demonstrates
that, whenfc. fK, the contributions of the noise tou1m

2 and
to «m are very different. For example, iffc=10fK, the ratios
su1m

2 −u1
2d /u1

2 and s«m−«d /« are approximately 3.3% and
2000%, respectively. This indicates that the high-frequency
noise contamination, if not properly filtered out, has an ex-
tremely large impact on«m while its influence onu1m

2 , or
more generally onuim

2 , is very much less.
Next we examine the effects of noise on the measured

Kolmogorov scaleshm and fKm. Let us express the measured
dissipation«m by

«m = « + «n = «s1 + «n/«d = C« s15d

with C=s1+«n/«d.1, where«n denotes the noise contribu-
tion. Substituting Eq.s15d into Eq. s1d leads to

hm = sn3/C«d1/4 = C−1/4h. s16d

Then, from Eq.s6d, we obtain

fKm = C1/4fK. s17d

Accordingly, the error in«m, hm, or fKm from high-frequency
noise can be measured by the departure ofCp from unity. As
seen from Eqs.s15d–s17d, the exponentp varies fromp=1
for «m to p=1/4 for hm and fKm. This implies a much greater
error for «m than forhm and fKm. For example, the case«m
=5« results in an error of 400%sovervaluedd, while the cor-
responding error is only 33%sunderestimatedd for hm and
50% soverestimatedd for fKm. It follows that, if we can refil-
ter uim at fKm calculated from Eq.s6d and then recalculate«m,
the noise part«n or sC−1d fsee Eq.s15dg will reduce dra-
matically. Subsequent recalculations ofhm, fKm, and then«m
will further reduce their errors until«m→«, hm→h, and
fKm→ fK. In principle, this analysis does not require any as-
sumptions such as isotropy or Taylor’s hypothesis. That is,
were the true« or all terms of Eq.s2d measurable, it would
result in such an iterative scheme by which all noise con-
taminations ofuim si =1,2,3d can be optimally filtered and
therefore by which the “true”«, h, andfK can be found from
postprocessing of sampled signals ofuim. However, since the
direct measurement of« is impossible at present, and in the
foreseeable future, this scheme currently can be implemented
only by invoking the isotropy assumption Eq.s3d and Tay-
lor’s hypothesis Eq.s4d. Here we propose it in Fig. 2 and
provide more details below.

The original velocity signalU1m
s0dstd is measured by a hot-

wire probe and sampled at a very high frequencys20 kHz,
sayd. Application of analog filters is not necessary, i.e., no
filtering is neededsfc

s0d=`d. Otherwise, use a high cutoff
frequencyfc

s0d. With the signal collected, first calculate«m
s0d

from Eq. s5d and thenhm
s0d from Eq. s1d. Next, substituting

hm
s0d into Eq.s6d results infKm

s0d . If sfc
s0d− fKm

s0d d / fc
s0d.d, whered

is a threshold of convergencesand should be small, say,
ø10−3d, filter u1m

s0d at fc
s1d= fKm

s0d digitally using, e.g.,MATLAB .

FIG. 1. sColor onlined Power spectra ofu1m
2 and «m with and

without noise contamination.
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The newly filtered velocity signalu1m
s1d is thus generated.

The above process may be repeated as many times as
necessary to generateu1m

s2d ,u1m
s3d , . . . ,u1m

sNd, and then
]u1m

s2d /]t ,]u1m
s3d /]t , . . . ,]u1m

sNd /]t, until sfc
sNd− fKm

sNdd / fc
sNdød or

until fKm
sNd, hm

sNd, and«m
sNd have converged satisfactorily. From

the converged data, we finally obtain«=«m
sNd, fK= fKm

sNd, and
h=hm

sNd.
Based on Eqs.s15d–s17d, both fKm

sid and hm
sid should con-

verge quickly to their respective “asymptotic” values. This is
true as demonstrated as an example in Table I for the case of
fc

s0d=10fK, with reference to Figs. 1 and 2. Clearly, for this
case,«m→«, hm→h, and fKm→ fK just in two iterations,
with an accuracy of 99.8%.

To validate the present scheme for real measurements, the
instantaneous streamwise velocitys=U1+u1d is obtained us-
ing hot-wire anemometry along the centerline of a two-
dimensional plane jet issuing from a rectangularsw3h
=34035.6 mm2d slot, with aspect ratiow/h=60. Here only
a brief description of the jet facility is given as details may
be found in f11g. To ensure statistical two-dimensionality,
two parallel platess200031800 mm2d are attached to the
short sides of the slot so that the jet mixes with ambient fluid
only in the direction normal to the long sides, following, e.g.,
Gutmark and Wygnanskif12g. The jet exit velocity isUj
<8 m/s, which corresponds to a Reynolds number Re
;Ujh/n of approximately 3000.

Velocity measurements are performed over the region
20øx1/hø160 using a single hot-wirestungstend probe.

The hot-wire sensor is 5mm in diameter and approximately
0.8 mm in length, aligned in the spanwisesx3d direction. Ve-
locity signals obtained at all the measured locations are low-
pass filtered with a high and identical cutoff frequency of
fc=9.2 kHz. Then they are digitized atfs=2fc=18.4 kHz via
a 16-channel, 12-bit analog-to-digital converter on a personal
computer. The sampling duration is approximately 22 s. The
wire calibration is conducted using a standard pitot tube in
the jet potential core near to the exit whereu1

21/2/Uj <0.5%.
The above measurements yield the original velocity sig-

nals Ũ1m
s0dstd=U1m

s0d +u1m
s0dstd, which are corrected for the hot-

wire length of 0.8 mm using Wyngaard’s approachf13g, and,
consequently, the original time derivatives along the jet cen-
treline atx1/hù20 are obtained as follows:

]u1m
s0d/]t < Du1m

s0d/Dt = fsfu1m
s0dst + fs

−1d − u1m
s0dstdg with Dt = fs

−1.

s18d

In this region, the original mean velocityU1m
s0d snot presentedd

is found to follow closely the relationUc/Uj ,sx1/hd−1/2

shereUc denotes the centreline mean velocityd, which is re-
quired by self-preservation of the jet. This relation and also
that for the half-velocity width, i.e.,L1/2/h,x1/h, are well
satisfied by previous datase.g.,f4gd obtained in the far field.

For high-Re flows, it is usually considered that the dissi-
pation of turbulent kinetic energy« out of the smallest-scale
structures is equal to the supply rate of the turbulence energy
from the large-scale structures, which is of orderU0

3/L0,
where U0 and L0 are the local characteristic velocity and
length scalesssee, e.g.,f14gd. Based on this argument, we
obtain «,Uc

3/L1/2, by taking U0=Uc and L0=L1/2, for a
plane jet. It follows that self-preservation of the flow further
requires

«shUj
−3d = C«sx1/hd−5/2 s19d

and

FIG. 2. Iterative scheme of
digital filter to obtain h and fK

from u1m.

TABLE I. Use of the iterative scheme forfc
s0d=10fK.

Iterations
i f c

sid< «m
sid< hm

sid< fKm
sid <

0 10fK 17.0« 0.5h 2.0fK

1 2.0fK 1.10« 0.98h 1.02fK

2 1.02fK 1.02« 0.998h 1.002fK
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h/h = Chsx1/hd5/8, s20d

whereC« and Ch are constants determined by experiments.
Indeed, both Eqs.s19d ands20d have been verified by Anto-
nia et al. f4g who found thatC«<1.3 andCh<0.94 Rej

−3/4.
These relations provide a rigorous basis against which to

validate the proposed iterative filtering scheme using our jet

centerline velocity signalŨ1m
s0dstd=U1m

s0d +u1m
s0dstd for x1/hù20.

Figure 3 presents the results of«m andhm calculated from
the original signal and after three iterations of digital filter-
ing. The iterative procedure is involved in obtaining«m

sid from
s5d via s18d and hm

sid and fKm
sid from s1d and s6d. As with the

example presented earlier, it is found that only three itera-
tionssN=3d are required for«m

sid, hm
sid, andfKm

sid at all measured
locations to converge to their asymptotic values when setting
d=10−3 snote that a smaller value ofd requires more itera-
tions; e.g.,N=5 if d=10−4d. Also shown in Fig. 3 are Eqs.
s19d and s20d using C«<1.3 andCh<0.94 Rej

−3/4 obtained
by Antoniaet al. f4g.

Figure 3 demonstrates that the data of«m
s3d andhm

s3d agree
almost identically with the curves of Eqs.s19d and s20d
throughout the measured region. This provides strong sup-
port both for the validity of the iterative scheme and for the
valuesC«<1.3 andCh<0.94 Rej

−3/4. It is also noted that,
while «m

s0d lies well above Eq.s20d, hm
s0d falls below Eq.s19d.

As x1 increases,fK decreases and thus the ratiofc
s0d / fK in-

creases so that the relative contribution of electronic noise
grows rapidly. Consequently,«m

s0d and hm
s0d show increased

departures from their true values with increasedx1. This
problem may be responsible for errors in some previously
reported data, since the delicate setting for the low-pass filter

described inf4g may not work very well due to the fact that
fK is unknowna priori. A typical example of data that is
apparently contaminated by noise can be found inf15g ssee
their Figs. 3 and 4d, where various velocity and scalar struc-
ture functions are reported. That these measurements are
quite recent highlights the need for a more rigorous approach
to obtain such data for basic research of turbulence.

Figure 3 also illustrates the effect of overfilteringu1mstd.
In this case, the measured values of«m and hm can never
agree with the relationss19d and s20d. The results presented
for this case are obtained from filtering allu1m

s0dstd along the
centerline atfc=350 Hz, which is one-half offK for x1/h
=160. Interestingly, these measurements of«m agree quite
well with those from previous studiesf12,16g, where their
values of«mh/Uj

3 were converted from their reported data.
Gutmark and Wygnanskif12g and Heskestadf16g did not
offer any detailed information about their filter settings.
However it is quite clear that their measurements do not
follow relationss19d ands20d and therefore that their signals
might well be overfiltered. Hence, their data offered wrong
information that Eq.s19d does not hold in the far field of
their jet where self-similarity of the mean flow has devel-
oped. The above observation provides further support for our
iterative scheme.

In summary, based on the definitions of the Kolmogorov
scalesh and fK, a fast-convergent iterative scheme has been
developed to both optimally filter the noise-contaminated
hot-wire velocity signals and simultaneously find the values
of h and fK. The scheme, implemented via use of the isot-
ropy assumption and Taylor’s hypothesis, has been validated
firmly by its application to the instantaneous velocities mea-
sured in a turbulent plane jetspresentedd and other flowssnot
presented hered. The proposed scheme is believed to have
wide significance for basic research on fine-scale turbulence
because nearly all experimental studies in this field to date
have used hot-wire measurementsf17g. It has implications
for past measurements, and the conclusions based on them,
which may suffer to an unknown extent from the contamina-
tion of noise resulting from underfiltered or overfiltered data.
Application of our scheme will allow future measurements to
determine the correct cutoff frequency, as well ash and fK,
easily and unambiguously, so generating reliable data for
better understanding of small-scale turbulence. Our scheme
is much simpler and more rigorous than the previous scheme
f4g and even obviates the need for analog filters, differentia-
tors, and the like.

The present scheme also applies for the measurement of
temperaturesscalard using cold-wire anemometer for esti-
mates of the Batchelor, instead of the Kolmogorov, scale.

The support of the Australian Research Council is grate-
fully acknowledged.

FIG. 3. sColor onlined Centerline variations of«mshUj
−3d and

hmh−1 for the plane jet.
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