PHYSICAL REVIEW E 71, 066304(2005

Fast-convergent iterative scheme for filtering velocity signals and finding Kolmogorov scales
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The present fundamental knowledge of fluid turbulence has been established primarily from hot- and cold-
wire measurements. Unfortunately, however, these measurements necessarily suffer from contamination by
noise since no certain method has previously been available to optimally filter noise from the measured signals.
This limitation has impeded our progress of understanding turbulence profoundly. We address this limitation by
presenting a simple, fast-convergent iterative scheme to digitally filter signals optimally and find Kolmogorov
scales definitely. The great efficacy of the scheme is demonstrated by its application to the instantaneous
velocity measured in a turbulent jet.
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In his pioneering workl1] on turbulence, Kolmogorov It is important to note that the nonfiltered or slightly fil-
derived, based on dimensional reasoning, the characteristiered velocity signalay;,, (the subscriptm means “mea-
length of the finest-scale turbulent motions to be sured’) is inevitably contaminated by high-frequency elec-

14 1) tronic noise(n), i.e.,
which is hence called the “Kolmogorov length scale.” In Eq.

(1), v is the kinematic viscosity anelis the average dissipa- This contamination causes both the spatial and temporal gra-

tion rate of the turbulence kinetic energy given 18.9., dient variances to be overestimated, i.e.,
Hinze[2])

n=(v%e)
Um =U; + N, (7)

(Ii/ %)% = (Uil 9%;)* + (Il 3x;)?, (8)
e= V((')]Ui/ﬂxj' + (9UJ/(9X|)(9U|/(7XJ (2)

with standard Cartesian tensor notation and summation on (AUl Jt)? = (dul at)? + (anl dt)?.

repeated indices, whereor j=1, 2, and 3 represent the 5 >
streamwise, lateral, and spanwise directions, respectively. The extra terms(dn/dx;)* and (an/dt)° are the unwanted

The appropriate estimate efis of significant importance noise contributions. Therefore, to achieve accurate measure-

for improving our understanding of the fine-scale turbulenceMeNts of the velocity gradients, it is necessary that the raw
However, great difficulty occurs in directly measuring this VEIOCity signalsui, be low-pass filtered at a specific cutoff
characteristic scale. To obtainrequires all the 12 terms of [T€dquUeNCcyf. to eliminate the effect of noise. The choicefof
gradient correlations in Eq2) to be measured. This task IS crmcal.- TOO high gnd it will not remove noise contribu-
cannot be realized by presently available experimental tections sufficiently, while too low and it will wipe out some
niques. Accurate measurements of even one component GPNteNt of the signal. The right choice féyis the Kolmog-
au,/ ax;, as is well known, requires a multisensor probe with®V frequencyfy, i.e., the characteristic frequency of the
extremely high spatial and temporal resolution to incorporat&Mallest structures. Howeveg, not only is a function of the
even the smallest scales of velocity fluctuations. MoreoverlOW but also varies with spatial locations in the flow so that
several cross-correlation terms in B@) simply cannot be It cannot be determineal priori. The method described [#]
measured directly noW3] or in the foreseeable future, let © determinefc in situis complex, requiring two mechanical
alone direct measurements efand 7. In this context, it analog filters, a differentiator, a real-time spectrum analyzer,

remains necessary to estimatérom hot-wire measurements visual inspection, and optimization aachmeasurement lo-

of & using the isotropic relation cation. This procedure is only realistic where the number of
spatial locations or flow conditions is limited, and is prohibi-
& = 150(duy/x,)? (3) tive for experiments where these are large. In the absence of

a simpler procedure, more arbitrary criteria are usually
adopted, so that most previous measurements mwiust be
(aullaxl)Z:UIz(aullm)z, (4) co_ntgmina_ted by no_ise to some extent. Th_e_importance of
this issue is also evident frofi] from which it is deduced
whereU, is the local streamwise mean velocity. Substitutionthat even slightly over filteringy,,, at f.< fx may cause sub-
of Eq. (4) into Eq.(3) leads to stantial underestimate of the velocity gradients.
From the above discussion it is obvious that substantial

and also Taylor’s hypothesis

- -2 2
& = 150U, (duy/at)°. (5) benefit would arise from a procedure that could correctly
In addition, the Kolmogorov frequency is defined as obtainfy without prior knowledge of, or obtain both, and
fx solely from a nonfiltered signal af;,, The present work
f = U2y L. (6) aims to address this issue, i.e., to develop a simple and ef-
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fective scheme that can definitively obtainand fy from
U;q(t), and thus a means by which to low-pass filter all the
velocity componentsi(t) at f,=fx, thereby minimizing the
effect of noise on gradienty;/dx; and other derived quan-
tities such as structure functions.

Let us first inspect the contributions of noise to the mea-

sured kinetic energﬁf and dissipatiore. This is illustrated
using the one-dimensional spectral forms@f and ¢ for
isotropy, which argsee[6])

o

u§:J
0

oo

s=15vf
0

respectively, wher&; is the one-dimensional spectrum func-
tion andk; is the wave number in the streamwise) direc-
tion. To demonstrate the influence of noisednande, we
consider the model spectrum functiéeg.,[7,8])

Ea(ky) = Cie?%k; > exf— alky7)¥] (12)

whereCy is a “constant” determined empirically by experi-
ments anngcK. Note that Eq(11) has been verified by a
large body of experimental high-Re ddsee[9] which ref-
erences relevant experimentsUsing Eqg. (6) and k;
=27f/U, (Taylor hypothesis Eq. (11) may be rewritten as

El(f) = CK(27T/U1)_5/3f_5/3 exd_ Ol(f/fK)3/4] . (12)

Eq(kpdk, 9
and

KZE; (ky)dky, (10
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FIG. 1. (Color onling Power spectra 0@ and e, with and
without noise contamination.

N = (V3/C8)1/4: C_1/47]. (16)
Then, from Eq.(6), we obtain
fim= CY4y. (17)

Accordingly, the error ire,,, 7, or fx, from high-frequency
noise can be measured by the departur€bfrom unity. As
seen from Eqs(15—(17), the exponenp varies fromp=1
for e, to p=1/4 for ., andfk,, This implies a much greater
error for g, than for 7, and fy,,,. For example, the cassg,

Suppose the noise-contaminated velocity spectrum to bg ¢ results in an error of 400%overvalued, while the cor-

E.=E;+E,, whereE, is the “noise” contribution. Then,
from Eqgs.(9) and(10) andk;=2#f/U;, we can obtain
W= zwugljw (E, +E,)df (13)
0
and
: f2(E, + E,)df.

em=120m°0U73 f (14)

0

Using Eq.(12) with Cx=1.7 and therx=2.55(e.qg.,[10]) we
illustrate in Fig. 1 the spectral density distributions

and e, with E,=0 andE,=10"3(f/fc)% This demonstrates
that, whenf,> fy, the contributions of the noise i, and
to ey, are very different. For example, ff=10fy, the ratios
(U2—ud/ui and (s,—¢)/e are approximately 3.3% and

responding error is only 33%underestimatedfor 7, and
50% (overestimatedfor fy,,. It follows that, if we can refil-

ter u,,, at fx,, calculated from Eq(6) and then recalculate,,

the noise partk, or (C-1) [see Eq.(15)] will reduce dra-
matically. Subsequent recalculations#f, fx, and thene,,

will further reduce their errors untit,— e, 7,— 7, and
fum— fk. In principle, this analysis does not require any as-
sumptions such as isotropy or Taylor's hypothesis. That is,
were the trues or all terms of Eq.(2) measurable, it would
result in such an iterative scheme by which all noise con-
taminations ofu,,, (i=1,2,3 can be optimally filtered and
therefore by which the “true, », andfy can be found from
postprocessing of sampled signalsugf. However, since the
direct measurement af is impossible at present, and in the
foreseeable future, this scheme currently can be implemented
only by invoking the isotropy assumption E) and Tay-
lor's hypothesis Eq(4). Here we propose it in Fig. 2 and

2000%, respectively. This indicates that the high-frequenqbrovide more details below.

noise contamination, if not properly filtered out, has an ex-

tremely large impact orz,, while its influence onuim, or
more generally onuizm, is very much less.

Next we examine the effects of noise on the measure
Kolmogorov scales;,, andfy,,. Let us express the measured
dissipatione,, by

(15

with C=(1+e,/e)>1, whereg, denotes the noise contribu-
tion. Substituting Eq(15) into Eq. (1) leads to

em=e+te,=e(l+eJe) =Ce

The original velocity signaU(l?TZ(t) is measured by a hot-
wire probe and sampled at a very high freque29 kHz,
ay). Application of analog filters is not necessary, i.e., no
iitering is needed(f”’==). Otherwise, use a high cutoff
frequencyf(co). With the signal collected, first calculah{;?)
from Eg. (5) and thennf? from Eq. (1). Next, substituting
77;?) into Eq.(6) results infl((oriq. If (f(co)—f(é’;)/f(co)> o, whered
is a threshold of convergenadand should be small, say,

<1079, filter u(l?])1 at f(cl):fff’r)n digitally using, e.g. MATLAB.
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Acquire [J © (r) sampled at a
very high rate e.g., of 20 kHz Obtain mean &
(no filter is necessary) rms values

i=0

i+1

A

Filter 40 (z) at fc('“) = ,é’: J

Calculate ef,',) using Eq. (5)

h 4

FIG. 2. lterative scheme of
digital filter to obtain » and fy
from uy,.

Calculate B using Eq. (1)

A 4
(l)

Calculate f, ' using Eq. (6) [—

End the process:

(N) fK (N)
&n 1,‘(N)

The newly filtered velocity signau%; is thus generated. The hot-wire sensor is pm in diameter and approximately
The above process may be repeated as many times 8s8 mm in length, aligned in the spanwise) direction. Ve-

necessary to generateuznz (3) u(N) and then locity signals obtained at all the measured locations are low-
Ju 2)/5¢ (9u(3)/07t /(;[ untll (f“\‘ RN))/f(N)<5 or  pass filtered with a high and identical cutoff frequency of

f.=9.2 kHz. Then they are digitized &=2f.=18.4 kHz via

until £ 7lm , ande have converged sat|sfact0r|ly From

Km? . ..

(N) (N) a 16-channel, 12-bit analog-to-digital converter on a personal

the converged data we finally obtaire e, fic=fin, and computer. The sampling duration is approximately 22 s. The
n= 77m ) wire calibration is conducted using a standard pitot tube in

Based on Eqs(15—(17), both f(') and 77('> should con-
verge quickly to their respective * asymptotlc values. This is
true as demonstrated as an example in Table | for the case of
f(cO 10fk, with reference to Figs. 1 and 2. Clearly, for this
case,en,— ¢, n— 7, and fy,— fx just in two iterations,
with an accuracy of 99.8%.

To validate the present scheme for real measurements, t
instantaneous streamwise velocftyU, +u,) is obtained us- ©) Y ) 1 ©) . .
ing hot-wire anemometry along the centerline of a two- i/t = AU/ At=fluin(t+ ) U] with At=fS"
dimensional plane jet issuing from a rectangularxh (18
=340x 5.6 mn?) slot, with aspect ratiov/h=60. Here only
a brief description of the jet facility is given as details may In this region, the original mean velocuyo) (not presented
be found in[11]. To ensure statistical two-dimensionality, is found to follow closely the relatlorU /U j~ (X /h)” 12
two parallel plates(2000x 1800 mnf) are attached to the (hereU, denotes the centreline mean velo);nwhlch is re-
short sides of the slot so that the jet mixes with ambient fluidquired by self-preservation of the jet. This relation and also
only in the direction normal to the long sides, following, e.g., that for the half-velocity width, i.e.l.;,,/h~Xx,/h, are well
Gutmark and WygnansKi12]. The jet exit velocity isU; satisfied by previous dai&.g.,[4]) obtained in the far field.
~8 m/s, which corresponds to a Reynolds number Re For high-Re flows, it is usually considered that the dissi-
=U;h/v of approximately 3000. pation of turbulent kinetic energy out of the smallest-scale

Velocity measurements are performed over the regiorstructures is equal to the supply rate of the turbulence energy
20=<x,/h=<160 using a single hot-wirdtungsten probe. from the large-scale structures, which is of ordeglLo,
where Uy and Ly are the local characteristic velocity and
length scalegsee, e.g.[14]). Based on this argument, we
obtain & ~U2/Ly,, by taking Up=U, and Lo=L,,,, for a

the jet potential core near to the exit wherg’?/U;~ 0.5%.
The above measurements yield the original velocity sig-

(t) U m(t), which are corrected for the hot-
wire Iength of 0 8 mm using Wyngaard's approad], and,
consequently, the original time derivatives along the jet cen-
ﬁreeline atx,;/h=20 are obtained as follows:

TABLE |. Use of the iterative scheme fcito):lofK.

|terai1tions 0 e i) _ () plane jet. It follows that self-preservation of the flow further
c m m Km requires
0 10f 17.Ce 0.5 2.0f¢ " "
1 2.0f 1.10e 0.98 1.02f¢ e(hU;) = C,(xq/h) (19
2 1.0% 1.02 0.998y 1.00%
and
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107 e ' U T ——3 described if4] may not work very well due to the fact that
S ____8___,__;——4—-*"“"‘_&“4'1(3-) ] fx is unknowna priori. A typical example of data that is
 [e——p—s% ° o e eeoeeRee apparently contaminated by noise can be founfil (see

"’zg' 094826 V()56 E their Figs. 3 and % where various velocity and scalar struc-

r ture functions are reported. That these measurements are
g " quite recent highlights the need for a more rigorous approach
[l SN /'3‘"“" E to obtain such data for basic research of turbulence.
2 o ™ Figure 3 also illustrates the effect of overfilteringy(t).
o LO © 0 0060000000 In this case, the measured valuesegf and 7, can never
2 TR A, agree with the relation&l9) and(20). The results presented
£ E A A for this case are obtained from filtering aff)(t) along the
E & [12] T A AL . . . m
® 05k gier TR 4 Ran, o 4 centerline atf.=350 Hz, which is one-half ofy for x;/h
E ““““ ‘%\K&& E =160. Interestingly, these measurementssgfagree quite
] well with those from previous studig42,16, where their
1o —r ' T 700 values ofeh/U? were converted from their reported data.
x/h Gutmark and WygnansKil2] and Heskestadl16] did not

offer any detailed information about their filter settings.
However it is quite clear that their measurements do not
follow relations(19) and(20) and therefore that their signals
might well be overfiltered. Hence, their data offered wrong
information that Eq.(19) does not hold in the far field of
) ) their jet where self-similarity of the mean flow has devel-
whereC, andC,, are constants determined by experiments oneq. The above observation provides further support for our
Indeed, both Eqs19) and(20) have been verified by Anto- jiarative scheme.
nia et al. [4] who found thatC, ~1.3 andC,~0.94 R‘?SM-. In summary, based on the definitions of the Kolmogorov
These relations proylde a rigorous basis against wh|ch_tgca|es77 andfy, a fast-convergent iterative scheme has been
validate the proposed |tgrat|ve filtering scheme using our Je&eveloped to both optimally filter the noise-contaminated
centerline velocity signalU(l?])q(t)zu(l?# u(l?:](t) for x;/h=20. hot-wire velocity signals and simultaneously find the values
Figure 3 presents the results&f and 7, calculated from  of » andfy. The scheme, implemented via use of the isot-
the original signal and after three iterations of digital filter- ropy assumption and Taylor’s hypothesis, has been validated
ing. The iterative procedure is involved in obtaini.qﬁ from  firmly by its application to the instantaneous velocities mea-
(5) via (18) and 77<'> and ff(')m from (1) and (6). As with the  sured in a turbulent plane jgresentefland other flowgnot

example presented earlier. it is found that only three iterapresented heje The proposed scheme is believed to have

tions (N=3) are required foeg][ ,72]), andffgn at all measured Wide significance for basic research on fine-scale turbulence
locations to converge to their asymptotic values when settin%ecause nearly all experimental studies in this field to date
5=1073 (note that a smaller value af requires more itera- Nnave used hot-wire measuremefits]. It has implications
tions; e.g.,N=5 if 5=107%). Also shown in Fig. 3 are Egs. for.past measurements, and the conclusions based on .them,
(19) and (20) using C,~1.3 andC,~0.94 Ref"‘ obtained whlch may suffer to an unknown extent from the. contamina-
tion of noise resulting from underfiltered or overfiltered data.

by Antoniaet al. [4]. o .

Figure 3 demonstrates that the datasﬁ‘f and 7 agree Application of our scheme will allow future measurements to
almost identically with the curves of Eq$19) and (20 dete_rmme the correct cutoff frequency, as well_mand fic
throughout the measured region. This provides strong su asily and unamk_Jlguoust, S0 generating reliable data for
port both for the validity of the iterative scheme and for the. etter understandmg of sm_all-scale trbulence. .Our scheme
valuesC.~1.3 andC.~0.94 R§3’4. It is also noted that IS much simpler and more rigorous than the previous scheme
while £© lies well above Eq(20). 7 falls below Eq.(19) " [4] and even obviates the need for analog filters, differentia-

.m Lom e tors, and the like.
As x, increasesfy decreases and thus the rafif/f in- The present scheme also applies for the measurement of

creases so that the relative contribution of electronic nOiS?emperature(scalaD using cold-wire anemometer for esti-

; (0 (0) ; :
grows rapidly. Consequently;,,” and 7, show increased yates of the Batchelor, instead of the Kolmogorov, scale.
departures from their true values with increasqd This
problem may be responsible for errors in some previously The support of the Australian Research Council is grate-

reported data, since the delicate setting for the low-pass filtefully acknowledged.

FIG. 3. (Color online Centerline variations ofsm(huj'3) and
nht for the plane jet.

lh=C,(x/h)"®, (20)
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